// // Copyright Coinbase, Inc. All Rights Reserved. // // SPDX-License-Identifier: Apache-2.0 // // Package schnorr implements a Schnorr proof, as described and used in Doerner, et al. https://eprint.iacr.org/2018/499.pdf // see Functionalities 6. it also implements a "committed" version, as described in Functionality 7. package schnorr import ( "crypto/rand" "crypto/subtle" "fmt" "github.com/pkg/errors" "golang.org/x/crypto/sha3" "github.com/onsonr/hway/crypto/core/curves" ) type Commitment = []byte type Prover struct { curve *curves.Curve basePoint curves.Point uniqueSessionId []byte } // Proof contains the (c, s) schnorr proof. `Statement` is the curve point you're proving knowledge of discrete log of, // with respect to the base point. type Proof struct { C curves.Scalar S curves.Scalar Statement curves.Point } // NewProver generates a `Prover` object, ready to generate Schnorr proofs on any given point. // We allow the option `basePoint == nil`, in which case `basePoint` is auto-assigned to be the "default" generator for the group. func NewProver(curve *curves.Curve, basepoint curves.Point, uniqueSessionId []byte) *Prover { if basepoint == nil { basepoint = curve.NewGeneratorPoint() } return &Prover{ curve: curve, basePoint: basepoint, uniqueSessionId: uniqueSessionId, } } // Prove generates and returns a Schnorr proof, given the scalar witness `x`. // in the process, it will actually also construct the statement (just one curve mult in this case) func (p *Prover) Prove(x curves.Scalar) (*Proof, error) { // assumes that params, and pub are already populated. populates the fields c and s... var err error result := &Proof{} result.Statement = p.basePoint.Mul(x) k := p.curve.Scalar.Random(rand.Reader) random := p.basePoint.Mul(k) hash := sha3.New256() if _, err = hash.Write(p.uniqueSessionId); err != nil { return nil, errors.Wrap(err, "writing salt to hash in schnorr prove") } if _, err = hash.Write(p.basePoint.ToAffineCompressed()); err != nil { return nil, errors.Wrap(err, "writing basePoint to hash in schnorr prove") } if _, err = hash.Write(result.Statement.ToAffineCompressed()); err != nil { return nil, errors.Wrap(err, "writing statement to hash in schnorr prove") } if _, err = hash.Write(random.ToAffineCompressed()); err != nil { return nil, errors.Wrap(err, "writing point K to hash in schnorr prove") } result.C, err = p.curve.Scalar.SetBytes(hash.Sum(nil)) if err != nil { return nil, errors.Wrap(err, "writing point K to hash in schnorr prove") } result.S = result.C.Mul(x).Add(k) return result, nil } // Verify verifies the `proof`, given the prover parameters `scalar` and `curve`. // As for the prover, we allow `basePoint == nil`, in this case, it's auto-assigned to be the group's default generator. func Verify(proof *Proof, curve *curves.Curve, basepoint curves.Point, uniqueSessionId []byte) error { if basepoint == nil { basepoint = curve.NewGeneratorPoint() } gs := basepoint.Mul(proof.S) xc := proof.Statement.Mul(proof.C.Neg()) random := gs.Add(xc) hash := sha3.New256() if _, err := hash.Write(uniqueSessionId); err != nil { return errors.Wrap(err, "writing salt to hash in schnorr verify") } if _, err := hash.Write(basepoint.ToAffineCompressed()); err != nil { return errors.Wrap(err, "writing basePoint to hash in schnorr verify") } if _, err := hash.Write(proof.Statement.ToAffineCompressed()); err != nil { return errors.Wrap(err, "writing statement to hash in schnorr verify") } if _, err := hash.Write(random.ToAffineCompressed()); err != nil { return errors.Wrap(err, "writing point K to hash in schnorr verify") } if subtle.ConstantTimeCompare(proof.C.Bytes(), hash.Sum(nil)) != 1 { return fmt.Errorf("schnorr verification failed") } return nil } // ProveCommit generates _and_ commits to a schnorr proof which is later revealed; see Functionality 7. // returns the Proof and Commitment. func (p *Prover) ProveCommit(x curves.Scalar) (*Proof, Commitment, error) { proof, err := p.Prove(x) if err != nil { return nil, nil, err } hash := sha3.New256() if _, err = hash.Write(proof.C.Bytes()); err != nil { return nil, nil, err } if _, err = hash.Write(proof.S.Bytes()); err != nil { return nil, nil, err } return proof, hash.Sum(nil), nil } // DecommitVerify receives a `Proof` and a `Commitment`; it first checks that the proof actually opens the commitment; // then it verifies the proof. returns and error if either on eof thse fail. func DecommitVerify(proof *Proof, commitment Commitment, curve *curves.Curve, basepoint curves.Point, uniqueSessionId []byte) error { hash := sha3.New256() if _, err := hash.Write(proof.C.Bytes()); err != nil { return err } if _, err := hash.Write(proof.S.Bytes()); err != nil { return err } if subtle.ConstantTimeCompare(hash.Sum(nil), commitment) != 1 { return fmt.Errorf("initial hash decommitment failed") } return Verify(proof, curve, basepoint, uniqueSessionId) }