package mpc import ( "crypto/aes" "crypto/cipher" "errors" "fmt" "math/big" "github.com/cosmos/cosmos-sdk/types/bech32" "github.com/onsonr/sonr/crypto/core/curves" "github.com/onsonr/sonr/crypto/core/protocol" "github.com/onsonr/sonr/crypto/tecdsa/dklsv1" "golang.org/x/crypto/sha3" ) func checkIteratedErrors(aErr, bErr error) error { if aErr == protocol.ErrProtocolFinished && bErr == protocol.ErrProtocolFinished { return nil } if aErr != protocol.ErrProtocolFinished { return aErr } if bErr != protocol.ErrProtocolFinished { return bErr } return nil } func computeSonrAddr(pp Point) (string, error) { pk := pp.ToAffineCompressed() sonrAddr, err := bech32.ConvertAndEncode("idx", pk) if err != nil { return "", err } return sonrAddr, nil } func hashKey(key []byte) []byte { hash := sha3.New256() hash.Write(key) return hash.Sum(nil)[:32] // Use first 32 bytes of hash } func decryptKeyshare(msg []byte, key []byte, nonce []byte) ([]byte, error) { hashedKey := hashKey(key) block, err := aes.NewCipher(hashedKey) if err != nil { return nil, err } aesgcm, err := cipher.NewGCM(block) if err != nil { return nil, err } plaintext, err := aesgcm.Open(nil, nonce, msg, nil) if err != nil { return nil, err } return plaintext, nil } func encryptKeyshare(msg Message, key []byte, nonce []byte) ([]byte, error) { hashedKey := hashKey(key) msgBytes, err := protocol.EncodeMessage(msg) if err != nil { return nil, err } block, err := aes.NewCipher(hashedKey) if err != nil { return nil, err } aesgcm, err := cipher.NewGCM(block) if err != nil { return nil, err } ciphertext := aesgcm.Seal(nil, nonce, []byte(msgBytes), nil) return ciphertext, nil } func getAliceOut(msg *protocol.Message) (AliceOut, error) { return dklsv1.DecodeAliceDkgResult(msg) } func getAlicePubPoint(msg *protocol.Message) (Point, error) { out, err := dklsv1.DecodeAliceDkgResult(msg) if err != nil { return nil, err } return out.PublicKey, nil } func getBobOut(msg *protocol.Message) (BobOut, error) { return dklsv1.DecodeBobDkgResult(msg) } func getBobPubPoint(msg *protocol.Message) (Point, error) { out, err := dklsv1.DecodeBobDkgResult(msg) if err != nil { return nil, err } return out.PublicKey, nil } // getEcdsaPoint builds an elliptic curve point from a compressed byte slice func getEcdsaPoint(pubKey []byte) (*curves.EcPoint, error) { crv := curves.K256() x := new(big.Int).SetBytes(pubKey[1:33]) y := new(big.Int).SetBytes(pubKey[33:]) ecCurve, err := crv.ToEllipticCurve() if err != nil { return nil, fmt.Errorf("error converting curve: %v", err) } return &curves.EcPoint{X: x, Y: y, Curve: ecCurve}, nil } func serializeSignature(sig *curves.EcdsaSignature) ([]byte, error) { if sig == nil { return nil, errors.New("nil signature") } rBytes := sig.R.Bytes() sBytes := sig.S.Bytes() // Ensure both components are 32 bytes rPadded := make([]byte, 32) sPadded := make([]byte, 32) copy(rPadded[32-len(rBytes):], rBytes) copy(sPadded[32-len(sBytes):], sBytes) // Concatenate R and S result := make([]byte, 64) copy(result[0:32], rPadded) copy(result[32:64], sPadded) return result, nil } func deserializeSignature(sigBytes []byte) (*curves.EcdsaSignature, error) { if len(sigBytes) != 64 { return nil, fmt.Errorf("invalid signature length: expected 64 bytes, got %d", len(sigBytes)) } r := new(big.Int).SetBytes(sigBytes[:32]) s := new(big.Int).SetBytes(sigBytes[32:]) return &curves.EcdsaSignature{ R: r, S: s, }, nil } func userSignFunc(k *keyEnclave, bz []byte) (SignFunc, error) { curve := curves.K256() return dklsv1.NewBobSign(curve, sha3.New256(), bz, k.UserShare, protocol.Version1) } func userRefreshFunc(k *keyEnclave) (RefreshFunc, error) { curve := curves.K256() return dklsv1.NewBobRefresh(curve, k.UserShare, protocol.Version1) } func valSignFunc(k *keyEnclave, bz []byte) (SignFunc, error) { curve := curves.K256() return dklsv1.NewAliceSign(curve, sha3.New256(), bz, k.ValShare, protocol.Version1) } func valRefreshFunc(k *keyEnclave) (RefreshFunc, error) { curve := curves.K256() return dklsv1.NewAliceRefresh(curve, k.ValShare, protocol.Version1) }