sonr/pkg/crypto/paillier/paillier.go
Prad Nukala 89989fa102
feature/1114 implement account interface (#1167)
- **refactor: move session-related code to middleware package**
- **refactor: update PKL build process and adjust related
configurations**
- **feat: integrate base.cosmos.v1 Genesis module**
- **refactor: pass session context to modal rendering functions**
- **refactor: move nebula package to app directory and update templ
version**
- **refactor: Move home section video view to dedicated directory**
- **refactor: remove unused views file**
- **refactor: move styles and UI components to global scope**
- **refactor: Rename images.go to cdn.go**
- **feat: Add Empty State Illustrations**
- **refactor: Consolidate Vault Index Logic**
- **fix: References to App.wasm and remove Vault Directory embedded CDN
files**
- **refactor: Move CDN types to Models**
- **fix: Correct line numbers in templ error messages for
arch_templ.go**
- **refactor: use common types for peer roles**
- **refactor: move common types and ORM to a shared package**
- **fix: Config import dwn**
- **refactor: move nebula directory to app**
- **feat: Rebuild nebula**
- **fix: correct file paths in panels templates**
- **feat: Remove duplicate types**
- **refactor: Move dwn to pkg/core**
- **refactor: Binary Structure**
- **feat: Introduce Crypto Pkg**
- **fix: Broken Process Start**
- **feat: Update pkg/* structure**
- **feat: Refactor PKL Structure**
- **build: update pkl build process**
- **chore: Remove Empty Files**
- **refactor: remove unused macaroon package**
- **feat: Add WebAwesome Components**
- **refactor: consolidate build and generation tasks into a single
taskfile, remove redundant makefile targets**
- **refactor: refactor server and move components to pkg/core/dwn**
- **build: update go modules**
- **refactor: move gateway logic into dedicated hway command**
- **feat: Add KSS (Krawczyk-Song-Song) MPC cryptography module**
- **feat: Implement MPC-based JWT signing and UCAN token generation**
- **feat: add support for MPC-based JWT signing**
- **feat: Implement MPC-based UCAN capabilities for smart accounts**
- **feat: add address field to keyshareSource**
- **feat: Add comprehensive MPC test suite for keyshares, UCAN tokens,
and token attenuations**
- **refactor: improve MPC keyshare management and signing process**
- **feat: enhance MPC capability hierarchy documentation**
- **refactor: rename GenerateKeyshares function to NewKeyshareSource for
clarity**
- **refactor: remove unused Ethereum address computation**
- **feat: Add HasHandle and IsAuthenticated methods to HTTPContext**
- **refactor: Add context.Context support to session HTTPContext**
- **refactor: Resolve context interface conflicts in HTTPContext**
- **feat: Add session ID context key and helper functions**
- **feat: Update WebApp Page Rendering**
- **refactor: Simplify context management by using single HTTPContext
key**
- **refactor: Simplify HTTPContext creation and context management in
session middleware**
- **refactor: refactor session middleware to use a single data
structure**
- **refactor: Simplify HTTPContext implementation and session data
handling**
- **refactor: Improve session context handling and prevent nil pointer
errors**
- **refactor: Improve session context handling with nil safety and type
support**
- **refactor: improve session data injection**
- **feat: add full-screen modal component and update registration flow**
- **chore: add .air.toml to .gitignore**
- **feat: add Air to devbox and update dependencies**
2024-11-23 01:28:58 -05:00

377 lines
9.4 KiB
Go
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// Copyright Coinbase, Inc. All Rights Reserved.
//
// SPDX-License-Identifier: Apache-2.0
//
// Package paillier contains Paillier's cryptosystem (1999) [P99].
// Public-Key Cryptosystems Based on Composite Degree Residuosity Class.
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.4035&rep=rep1&type=pdf
// All routines here from pseudocode §2.5. Fig 1: The Paillier Cryptosystem.
//
// This module provides APIs for:
//
// - generating a safe keypair,
// - encryption and decryption,
// - adding two encrypted values, Enc(a) and Enc(b), and obtaining Enc(a + b), and
// - multiplying a plain value, a, and an encrypted value Enc(b), and obtaining Enc(a * b).
//
// The encrypted values are represented as big.Int and are serializable. This module also provides
// JSON serialization for the PublicKey and the SecretKey.
package paillier
import (
"encoding/json"
"fmt"
"math/big"
"github.com/pkg/errors"
"github.com/onsonr/sonr/pkg/crypto/core"
"github.com/onsonr/sonr/pkg/crypto/internal"
)
// PaillierPrimeBits is the number of bits used to generate Paillier Safe Primes.
const PaillierPrimeBits = 1024
type (
// PublicKey is a Paillier public key: N = P*Q; for safe primes P,Q.
PublicKey struct {
N *big.Int // N = PQ
N2 *big.Int // N² computed and cached to prevent re-computation.
}
// PublicKeyJson encapsulates the data that is serialized to JSON.
// It is used internally and not for external use. Public so other pieces
// can use for serialization.
PublicKeyJson struct {
N *big.Int
}
// SecretKey is a Paillier secret key.
SecretKey struct {
PublicKey
Lambda *big.Int // lcm(P - 1, Q - 1)
Totient *big.Int // Euler's totient: (P - 1) * (Q - 1)
U *big.Int // L((N + 1)^λ(N) mod N²)1 mod N
}
// SecretKeyJson encapsulates the data that is serialized to JSON.
// It is used internally and not for external use. Public so other pieces
// can use for serialization.
SecretKeyJson struct {
N, Lambda, Totient, U *big.Int
}
// Ciphertext in Pailler's cryptosystem: a value $c \in Z_{N²}$ .
Ciphertext *big.Int
)
var two = big.NewInt(2) // The odd prime
// NewKeys generates Paillier keys with `bits` sized safe primes.
func NewKeys() (*PublicKey, *SecretKey, error) {
return keyGenerator(core.GenerateSafePrime, PaillierPrimeBits)
}
// keyGenerator generates Paillier keys with `bits` sized safe primes using function
// `genSafePrime` to generate the safe primes.
func keyGenerator(genSafePrime func(uint) (*big.Int, error), bits uint) (*PublicKey, *SecretKey, error) {
values := make(chan *big.Int, 2)
errors := make(chan error, 2)
var p, q *big.Int
for p == q {
for range []int{1, 2} {
go func() {
value, err := genSafePrime(bits)
values <- value
errors <- err
}()
}
for _, err := range []error{<-errors, <-errors} {
if err != nil {
return nil, nil, err
}
}
p, q = <-values, <-values
}
// Assemble the secret/public key pair.
sk, err := NewSecretKey(p, q)
if err != nil {
return nil, nil, err
}
return &sk.PublicKey, sk, nil
}
// NewSecretKey computes intermediate values based on safe primes p, q.
func NewSecretKey(p, q *big.Int) (*SecretKey, error) {
if p == nil || q == nil {
return nil, internal.ErrNilArguments
}
// Pre-compute necessary values.
pm1 := new(big.Int).Sub(p, core.One) // P - 1
qm1 := new(big.Int).Sub(q, core.One) // Q - 1
n := new(big.Int).Mul(p, q) // N = PQ
nn := new(big.Int).Mul(n, n) // N²
lambda, err := lcm(pm1, qm1) // λ(N) = lcm(P-1, Q-1)
if err != nil {
// Code coverage note: lcm returns error only if the inputs are nil, which can never happen here.
return nil, err
}
totient := new(big.Int).Mul(pm1, qm1) // 𝝋(N) = (P-1)(Q-1)
pk := PublicKey{
N: n,
N2: nn,
}
// (N+1)^λ(N) mod N²
t := new(big.Int).Add(n, core.One)
t.Exp(t, lambda, nn)
// L((N+1)^λ(N) mod N²)
u, err := pk.l(t)
if err != nil {
return nil, err
}
// L((N+1)^λ(N) mod N²)^-1 mod N
u.ModInverse(u, n)
return &SecretKey{pk, lambda, totient, u}, nil
}
// MarshalJSON converts the public key into json format.
func (pk PublicKey) MarshalJSON() ([]byte, error) {
data := PublicKeyJson{pk.N}
return json.Marshal(data)
}
// UnmarshalJSON converts the json data into this public key.
func (pk *PublicKey) UnmarshalJSON(bytes []byte) error {
data := new(PublicKeyJson)
if err := json.Unmarshal(bytes, data); err != nil {
return err
}
if data.N == nil {
return nil
}
pk.N = data.N
pk.N2 = new(big.Int).Mul(data.N, data.N)
return nil
}
// lcm calculates the least common multiple.
func lcm(x, y *big.Int) (*big.Int, error) {
if x == nil || y == nil {
return nil, internal.ErrNilArguments
}
gcd := new(big.Int).GCD(nil, nil, x, y)
if core.ConstantTimeEq(gcd, core.Zero) {
return core.Zero, nil
}
// Compute least common multiple: https://en.wikipedia.org/wiki/Least_common_multiple#Calculation .
b := new(big.Int)
return b.Abs(b.Mul(b.Div(x, gcd), y)), nil
}
// l computes a residuosity class of n^2: (x - 1) / n.
// Where it is the quotient x - 1 divided by n not modular multiplication of x - 1 times
// the modular multiplicative inverse of n. The function name comes from [P99].
func (pk *PublicKey) l(x *big.Int) (*big.Int, error) {
if x == nil {
return nil, internal.ErrNilArguments
}
if core.ConstantTimeEq(pk.N, core.Zero) {
return nil, internal.ErrNCannotBeZero
}
// Ensure x = 1 mod N
if !core.ConstantTimeEq(new(big.Int).Mod(x, pk.N), core.One) {
return nil, internal.ErrResidueOne
}
// Ensure x ∈ Z_N²
if err := core.In(x, pk.N2); err != nil {
return nil, err
}
// (x - 1) / n
b := new(big.Int).Sub(x, core.One)
return b.Div(b, pk.N), nil
}
// NewPubkey initializes a Paillier public key with a given n.
func NewPubkey(n *big.Int) (*PublicKey, error) {
if n == nil {
return nil, errors.New("n cannot be nil")
}
return &PublicKey{
N: n,
N2: new(big.Int).Mul(n, n), // Compute and cache N²
}, nil
}
// Add combines two Paillier ciphertexts.
func (pk *PublicKey) Add(c, d Ciphertext) (Ciphertext, error) {
if c == nil || d == nil {
return nil, internal.ErrNilArguments
}
// Ensure c,d ∈ Z_N²
cErr := core.In(c, pk.N2)
dErr := core.In(d, pk.N2)
// Constant time error check
var err error
if cErr != nil {
err = cErr
}
if dErr != nil {
err = dErr
}
if err != nil {
return nil, err
}
ctxt, err := core.Mul(c, d, pk.N2)
if err != nil {
// Code coverage note: core.Mul returns error only if the inputs are nil, which can never happen here.
return nil, err
}
return ctxt, nil
}
// Mul is equivalent to adding two Paillier exponents.
func (pk *PublicKey) Mul(a *big.Int, c Ciphertext) (Ciphertext, error) {
if a == nil || c == nil {
return nil, internal.ErrNilArguments
}
// Ensure a ∈ Z_N
aErr := core.In(a, pk.N)
// Ensure c ∈ Z_N²
cErr := core.In(c, pk.N2)
var err error
// Constant time error check
if aErr != nil {
err = aErr
}
if cErr != nil {
err = cErr
}
if err != nil {
return nil, err
}
return new(big.Int).Exp(c, a, pk.N2), nil
}
// Encrypt produces a ciphertext on input message.
func (pk *PublicKey) Encrypt(msg *big.Int) (Ciphertext, *big.Int, error) {
// generate a nonce: r \in Z**_N
r, err := core.Rand(pk.N)
if err != nil {
return nil, nil, err
}
// Generate and return the ciphertext
ct, err := pk.encrypt(msg, r)
return ct, r, err
}
// encrypt produces a ciphertext on input a message and nonce.
func (pk *PublicKey) encrypt(msg, r *big.Int) (Ciphertext, error) {
if msg == nil || r == nil {
return nil, internal.ErrNilArguments
}
// Ensure msg ∈ Z_N
if err := core.In(msg, pk.N); err != nil {
return nil, err
}
// Ensure r ∈ Z^*_N: we use the method proved in docs/[EL20]
// ensure r ∈ Z^_N-{0}
if err := core.In(r, pk.N); err != nil {
return nil, err
}
if core.ConstantTimeEq(r, core.Zero) {
return nil, fmt.Errorf("r cannot be 0")
}
// Compute the ciphertext components: ɑ, β
// ɑ = (N+1)^m (mod N²)
ɑ := new(big.Int).Add(pk.N, core.One)
ɑ.Exp(ɑ, msg, pk.N2)
β := new(big.Int).Exp(r, pk.N, pk.N2) // β = r^N (mod N²)
// ciphertext = ɑ*β = (N+1)^m * r^N (mod N²)
c, err := core.Mul(ɑ, β, pk.N2)
if err != nil {
// Code coverage note: core.Mul returns error only if the inputs are nil, which can never happen here.
return nil, err
}
return c, nil
}
// Decrypt is the reverse operation of Encrypt.
func (sk *SecretKey) Decrypt(c Ciphertext) (*big.Int, error) {
if c == nil {
return nil, internal.ErrNilArguments
}
// Ensure C ∈ Z_N²
if err := core.In(c, sk.N2); err != nil {
return nil, err
}
// Compute the msg in components
// ɑ ≡ c^{λ(N)} mod N²
ɑ := new(big.Int).Exp(c, sk.Lambda, sk.N2)
// l = L(ɑ, N)
ell, err := sk.l(ɑ)
if err != nil {
return nil, err
}
// Compute the msg
// m ≡ lu = L(ɑ)*u = L(c^{λ(N)})*u mod N
m, err := core.Mul(ell, sk.U, sk.N)
if err != nil {
return nil, err
}
return m, nil
}
// MarshalJSON converts the secret key into json format.
func (sk SecretKey) MarshalJSON() ([]byte, error) {
data := SecretKeyJson{
sk.N,
sk.Lambda,
sk.Totient,
sk.U,
}
return json.Marshal(data)
}
// UnmarshalJSON converts the json data into this secret key.
func (sk *SecretKey) UnmarshalJSON(bytes []byte) error {
data := new(SecretKeyJson)
if err := json.Unmarshal(bytes, data); err != nil {
return err
}
if data.N != nil {
sk.N = data.N
sk.N2 = new(big.Int).Mul(data.N, data.N)
}
sk.U = data.U
sk.Totient = data.Totient
sk.Lambda = data.Lambda
return nil
}