sonr/crypto/dkg/frost/dkg_round1.go
Prad Nukala 807b2e86ec
feature/1220 origin handle exists method (#1241)
* feat: add docs and CI workflow for publishing to onsonr.dev

* (refactor): Move hway,motr executables to their own repos

* feat: simplify devnet and testnet configurations

* refactor: update import path for didcrypto package

* docs(networks): Add README with project overview, architecture, and community links

* refactor: Move network configurations to deploy directory

* build: update golang version to 1.23

* refactor: move logger interface to appropriate package

* refactor: Move devnet configuration to networks/devnet

* chore: improve release process with date variable

* (chore): Move Crypto Library

* refactor: improve code structure and readability in DID module

* feat: integrate Trunk CI checks

* ci: optimize CI workflow by removing redundant build jobs

---------

Co-authored-by: Darp Alakun <i@prad.nu>
2025-01-06 17:06:10 +00:00

149 lines
4.1 KiB
Go
Executable File

//
// Copyright Coinbase, Inc. All Rights Reserved.
//
// SPDX-License-Identifier: Apache-2.0
//
package frost
import (
"bytes"
crand "crypto/rand"
"encoding/gob"
"fmt"
"reflect"
"github.com/pkg/errors"
"github.com/onsonr/sonr/crypto/core/curves"
"github.com/onsonr/sonr/crypto/internal"
"github.com/onsonr/sonr/crypto/sharing"
)
// Round1Bcast are values that are broadcast to all other participants
// after round1 completes
type Round1Bcast struct {
Verifiers *sharing.FeldmanVerifier
Wi, Ci curves.Scalar
}
type Round1Result struct {
Broadcast *Round1Bcast
P2P *sharing.ShamirShare
}
func (result *Round1Result) Encode() ([]byte, error) {
gob.Register(result.Broadcast.Verifiers.Commitments[0]) // just the point for now
gob.Register(result.Broadcast.Ci)
buf := &bytes.Buffer{}
enc := gob.NewEncoder(buf)
if err := enc.Encode(result); err != nil {
return nil, errors.Wrap(err, "couldn't encode round 1 broadcast")
}
return buf.Bytes(), nil
}
func (result *Round1Result) Decode(input []byte) error {
buf := bytes.NewBuffer(input)
dec := gob.NewDecoder(buf)
if err := dec.Decode(result); err != nil {
return errors.Wrap(err, "couldn't encode round 1 broadcast")
}
return nil
}
// Round1P2PSend are values that are P2PSend to all other participants
// after round1 completes
type Round1P2PSend = map[uint32]*sharing.ShamirShare
// Round1 implements dkg round 1 of FROST
func (dp *DkgParticipant) Round1(secret []byte) (*Round1Bcast, Round1P2PSend, error) {
// Make sure dkg participant is not empty
if dp == nil || dp.Curve == nil {
return nil, nil, internal.ErrNilArguments
}
// Make sure round number is correct
if dp.round != 1 {
return nil, nil, internal.ErrInvalidRound
}
// Check number of participants
if uint32(len(dp.otherParticipantShares)+1) > dp.feldman.Limit || uint32(len(dp.otherParticipantShares)+1) < dp.feldman.Threshold {
return nil, nil, fmt.Errorf("length of dp.otherParticipantShares + 1 should be equal to feldman limit")
}
// If secret is nil, sample a new one
// If not, check secret is valid
var s curves.Scalar
var err error
if secret == nil {
s = dp.Curve.Scalar.Random(crand.Reader)
} else {
s, err = dp.Curve.Scalar.SetBytes(secret)
if err != nil {
return nil, nil, err
}
if s.IsZero() {
return nil, nil, internal.ErrZeroValue
}
}
// Step 1 - (Aj0,...Ajt), (xi1,...,xin) <- FeldmanShare(s)
// We should validate types of Feldman curve scalar and participant's curve scalar.
if reflect.TypeOf(dp.feldman.Curve.Scalar) != reflect.TypeOf(dp.Curve.Scalar) {
return nil, nil, fmt.Errorf("feldman scalar should have the same type as the dkg participant scalar")
}
verifiers, shares, err := dp.feldman.Split(s, crand.Reader)
if err != nil {
return nil, nil, err
}
// Store Verifiers and shares
dp.verifiers = verifiers
dp.secretShares = shares
// Step 2 - Sample ki <- Z_q
ki := dp.Curve.Scalar.Random(crand.Reader)
// Step 3 - Compute Ri = ki*G
Ri := dp.Curve.ScalarBaseMult(ki)
// Step 4 - Compute Ci = H(i, CTX, g^{a_(i,0)}, R_i), where CTX is fixed context string
var msg []byte
// Append participant id
msg = append(msg, byte(dp.Id))
// Append CTX
msg = append(msg, dp.ctx)
// Append a_{i,0}*G
msg = append(msg, verifiers.Commitments[0].ToAffineCompressed()...)
// Append Ri
msg = append(msg, Ri.ToAffineCompressed()...)
// Hash the message and get Ci
ci := dp.Curve.Scalar.Hash(msg)
// Step 5 - Compute Wi = ki+a_{i,0}*c_i mod q. Note that a_{i,0} is the secret.
// Note: We have to compute scalar in the following way when using ed25519 curve, rather than scalar := dp.Scalar.Mul(s, Ci)
// there is an invalid encoding error when we compute scalar as above.
wi := s.MulAdd(ci, ki)
// Step 6 - Broadcast (Ci, Wi, Ci) to other participants
round1Bcast := &Round1Bcast{
verifiers,
wi,
ci,
}
// Step 7 - P2PSend f_i(j) to each participant Pj and keep (i, f_j(i)) for himself
p2pSend := make(Round1P2PSend, len(dp.otherParticipantShares))
for id := range dp.otherParticipantShares {
p2pSend[id] = shares[id-1]
}
// Update internal state
dp.round = 2
// return
return round1Bcast, p2pSend, nil
}