sonr/crypto/core/curves/p256_bench_test.go
Prad Nukala 807b2e86ec
feature/1220 origin handle exists method (#1241)
* feat: add docs and CI workflow for publishing to onsonr.dev

* (refactor): Move hway,motr executables to their own repos

* feat: simplify devnet and testnet configurations

* refactor: update import path for didcrypto package

* docs(networks): Add README with project overview, architecture, and community links

* refactor: Move network configurations to deploy directory

* build: update golang version to 1.23

* refactor: move logger interface to appropriate package

* refactor: Move devnet configuration to networks/devnet

* chore: improve release process with date variable

* (chore): Move Crypto Library

* refactor: improve code structure and readability in DID module

* feat: integrate Trunk CI checks

* ci: optimize CI workflow by removing redundant build jobs

---------

Co-authored-by: Darp Alakun <i@prad.nu>
2025-01-06 17:06:10 +00:00

757 lines
16 KiB
Go
Executable File

//
// Copyright Coinbase, Inc. All Rights Reserved.
//
// SPDX-License-Identifier: Apache-2.0
//
package curves
import (
"crypto/elliptic"
crand "crypto/rand"
"crypto/sha256"
"crypto/subtle"
"fmt"
"io"
"math/big"
"testing"
"github.com/onsonr/sonr/crypto/core"
)
func BenchmarkP256(b *testing.B) {
// 1000 points
b.Run("1000 point hash - p256", func(b *testing.B) {
b.StopTimer()
points := make([][]byte, 1000)
for i := range points {
t := make([]byte, 32)
_, _ = crand.Read(t)
points[i] = t
}
acc := new(BenchPointP256).Identity()
b.StartTimer()
for _, pt := range points {
acc = acc.Hash(pt)
}
})
b.Run("1000 point hash - ct p256", func(b *testing.B) {
b.StopTimer()
points := make([][]byte, 1000)
for i := range points {
t := make([]byte, 32)
_, _ = crand.Read(t)
points[i] = t
}
acc := new(PointP256).Identity()
b.StartTimer()
for _, pt := range points {
acc = acc.Hash(pt)
}
})
b.Run("1000 point add - p256", func(b *testing.B) {
b.StopTimer()
points := make([]*BenchPointP256, 1000)
for i := range points {
points[i] = points[i].Random(crand.Reader).(*BenchPointP256)
}
acc := new(BenchPointP256).Identity()
b.StartTimer()
for _, pt := range points {
acc = acc.Add(pt)
}
})
b.Run("1000 point add - ct p256", func(b *testing.B) {
b.StopTimer()
curve := P256()
points := make([]*PointP256, 1000)
for i := range points {
points[i] = curve.NewIdentityPoint().Random(crand.Reader).(*PointP256)
}
acc := curve.NewIdentityPoint()
b.StartTimer()
for _, pt := range points {
acc = acc.Add(pt)
}
})
b.Run("1000 point double - p256", func(b *testing.B) {
b.StopTimer()
acc := new(BenchPointP256).Generator()
b.StartTimer()
for i := 0; i < 1000; i++ {
acc = acc.Double()
}
})
b.Run("1000 point double - ct p256", func(b *testing.B) {
b.StopTimer()
acc := new(PointP256).Generator()
b.StartTimer()
for i := 0; i < 1000; i++ {
acc = acc.Double()
}
})
b.Run("1000 point multiply - p256", func(b *testing.B) {
b.StopTimer()
scalars := make([]*BenchScalarP256, 1000)
for i := range scalars {
s := new(BenchScalarP256).Random(crand.Reader)
scalars[i] = s.(*BenchScalarP256)
}
acc := new(BenchPointP256).Generator().Mul(new(BenchScalarP256).New(2))
b.StartTimer()
for _, sc := range scalars {
acc = acc.Mul(sc)
}
})
b.Run("1000 point multiply - ct p256", func(b *testing.B) {
b.StopTimer()
scalars := make([]*ScalarP256, 1000)
for i := range scalars {
s := new(ScalarP256).Random(crand.Reader)
scalars[i] = s.(*ScalarP256)
}
acc := new(PointP256).Generator()
b.StartTimer()
for _, sc := range scalars {
acc = acc.Mul(sc)
}
})
b.Run("1000 scalar invert - p256", func(b *testing.B) {
b.StopTimer()
scalars := make([]*BenchScalarP256, 1000)
for i := range scalars {
s := new(BenchScalarP256).Random(crand.Reader)
scalars[i] = s.(*BenchScalarP256)
}
b.StartTimer()
for _, sc := range scalars {
_, _ = sc.Invert()
}
})
b.Run("1000 scalar invert - ct p256", func(b *testing.B) {
b.StopTimer()
scalars := make([]*ScalarP256, 1000)
for i := range scalars {
s := new(ScalarP256).Random(crand.Reader)
scalars[i] = s.(*ScalarP256)
}
b.StartTimer()
for _, sc := range scalars {
_, _ = sc.Invert()
}
})
b.Run("1000 scalar sqrt - p256", func(b *testing.B) {
b.StopTimer()
scalars := make([]*BenchScalarP256, 1000)
for i := range scalars {
s := new(BenchScalarP256).Random(crand.Reader)
scalars[i] = s.(*BenchScalarP256)
}
b.StartTimer()
for _, sc := range scalars {
_, _ = sc.Sqrt()
}
})
b.Run("1000 scalar sqrt - ct p256", func(b *testing.B) {
b.StopTimer()
scalars := make([]*ScalarP256, 1000)
for i := range scalars {
s := new(ScalarP256).Random(crand.Reader)
scalars[i] = s.(*ScalarP256)
}
b.StartTimer()
for _, sc := range scalars {
_, _ = sc.Sqrt()
}
})
}
type BenchScalarP256 struct {
value *big.Int
}
type BenchPointP256 struct {
x, y *big.Int
}
func (s *BenchScalarP256) Random(reader io.Reader) Scalar {
if reader == nil {
return nil
}
var seed [64]byte
_, _ = reader.Read(seed[:])
return s.Hash(seed[:])
}
func (s *BenchScalarP256) Hash(bytes []byte) Scalar {
xmd, err := expandMsgXmd(sha256.New(), bytes, []byte("P256_XMD:SHA-256_SSWU_RO_"), 48)
if err != nil {
return nil
}
v := new(big.Int).SetBytes(xmd)
return &BenchScalarP256{
value: v.Mod(v, elliptic.P256().Params().N),
}
}
func (s *BenchScalarP256) Zero() Scalar {
return &BenchScalarP256{
value: big.NewInt(0),
}
}
func (s *BenchScalarP256) One() Scalar {
return &BenchScalarP256{
value: big.NewInt(1),
}
}
func (s *BenchScalarP256) IsZero() bool {
return subtle.ConstantTimeCompare(s.value.Bytes(), []byte{}) == 1
}
func (s *BenchScalarP256) IsOne() bool {
return subtle.ConstantTimeCompare(s.value.Bytes(), []byte{1}) == 1
}
func (s *BenchScalarP256) IsOdd() bool {
return s.value.Bit(0) == 1
}
func (s *BenchScalarP256) IsEven() bool {
return s.value.Bit(0) == 0
}
func (s *BenchScalarP256) New(value int) Scalar {
v := big.NewInt(int64(value))
if value < 0 {
v.Mod(v, elliptic.P256().Params().N)
}
return &BenchScalarP256{
value: v,
}
}
func (s *BenchScalarP256) Cmp(rhs Scalar) int {
r, ok := rhs.(*BenchScalarP256)
if ok {
return s.value.Cmp(r.value)
} else {
return -2
}
}
func (s *BenchScalarP256) Square() Scalar {
return &BenchScalarP256{
value: new(big.Int).Exp(s.value, big.NewInt(2), elliptic.P256().Params().N),
}
}
func (s *BenchScalarP256) Double() Scalar {
v := new(big.Int).Add(s.value, s.value)
return &BenchScalarP256{
value: v.Mod(v, elliptic.P256().Params().N),
}
}
func (s *BenchScalarP256) Invert() (Scalar, error) {
return &BenchScalarP256{
value: new(big.Int).ModInverse(s.value, elliptic.P256().Params().N),
}, nil
}
func (s *BenchScalarP256) Sqrt() (Scalar, error) {
return &BenchScalarP256{
value: new(big.Int).ModSqrt(s.value, elliptic.P256().Params().N),
}, nil
}
func (s *BenchScalarP256) Cube() Scalar {
return &BenchScalarP256{
value: new(big.Int).Exp(s.value, big.NewInt(3), elliptic.P256().Params().N),
}
}
func (s *BenchScalarP256) Add(rhs Scalar) Scalar {
r, ok := rhs.(*BenchScalarP256)
if ok {
v := new(big.Int).Add(s.value, r.value)
return &BenchScalarP256{
value: v.Mod(v, elliptic.P256().Params().N),
}
} else {
return nil
}
}
func (s *BenchScalarP256) Sub(rhs Scalar) Scalar {
r, ok := rhs.(*BenchScalarP256)
if ok {
v := new(big.Int).Sub(s.value, r.value)
return &BenchScalarP256{
value: v.Mod(v, elliptic.P256().Params().N),
}
} else {
return nil
}
}
func (s *BenchScalarP256) Mul(rhs Scalar) Scalar {
r, ok := rhs.(*BenchScalarP256)
if ok {
v := new(big.Int).Mul(s.value, r.value)
return &BenchScalarP256{
value: v.Mod(v, elliptic.P256().Params().N),
}
} else {
return nil
}
}
func (s *BenchScalarP256) MulAdd(y, z Scalar) Scalar {
return s.Mul(y).Add(z)
}
func (s *BenchScalarP256) Div(rhs Scalar) Scalar {
n := elliptic.P256().Params().N
r, ok := rhs.(*BenchScalarP256)
if ok {
v := new(big.Int).ModInverse(r.value, n)
v.Mul(v, s.value)
return &BenchScalarP256{
value: v.Mod(v, n),
}
} else {
return nil
}
}
func (s *BenchScalarP256) Neg() Scalar {
z := new(big.Int).Neg(s.value)
return &BenchScalarP256{
value: z.Mod(z, elliptic.P256().Params().N),
}
}
func (s *BenchScalarP256) SetBigInt(v *big.Int) (Scalar, error) {
if v == nil {
return nil, fmt.Errorf("invalid value")
}
t := new(big.Int).Mod(v, elliptic.P256().Params().N)
if t.Cmp(v) != 0 {
return nil, fmt.Errorf("invalid value")
}
return &BenchScalarP256{
value: t,
}, nil
}
func (s *BenchScalarP256) BigInt() *big.Int {
return new(big.Int).Set(s.value)
}
func (s *BenchScalarP256) Bytes() []byte {
var out [32]byte
return s.value.FillBytes(out[:])
}
func (s *BenchScalarP256) SetBytes(bytes []byte) (Scalar, error) {
value := new(big.Int).SetBytes(bytes)
t := new(big.Int).Mod(value, elliptic.P256().Params().N)
if t.Cmp(value) != 0 {
return nil, fmt.Errorf("invalid byte sequence")
}
return &BenchScalarP256{
value: t,
}, nil
}
func (s *BenchScalarP256) SetBytesWide(bytes []byte) (Scalar, error) {
if len(bytes) < 32 || len(bytes) > 128 {
return nil, fmt.Errorf("invalid byte sequence")
}
value := new(big.Int).SetBytes(bytes)
value.Mod(value, elliptic.P256().Params().N)
return &BenchScalarP256{
value,
}, nil
}
func (s *BenchScalarP256) Point() Point {
return new(BenchPointP256).Identity()
}
func (s *BenchScalarP256) Clone() Scalar {
return &BenchScalarP256{
value: new(big.Int).Set(s.value),
}
}
func (s *BenchScalarP256) MarshalBinary() ([]byte, error) {
return scalarMarshalBinary(s)
}
func (s *BenchScalarP256) UnmarshalBinary(input []byte) error {
sc, err := scalarUnmarshalBinary(input)
if err != nil {
return err
}
ss, ok := sc.(*BenchScalarP256)
if !ok {
return fmt.Errorf("invalid scalar")
}
s.value = ss.value
return nil
}
func (s *BenchScalarP256) MarshalText() ([]byte, error) {
return scalarMarshalText(s)
}
func (s *BenchScalarP256) UnmarshalText(input []byte) error {
sc, err := scalarUnmarshalText(input)
if err != nil {
return err
}
ss, ok := sc.(*BenchScalarP256)
if !ok {
return fmt.Errorf("invalid scalar")
}
s.value = ss.value
return nil
}
func (s *BenchScalarP256) MarshalJSON() ([]byte, error) {
return scalarMarshalJson(s)
}
func (s *BenchScalarP256) UnmarshalJSON(input []byte) error {
sc, err := scalarUnmarshalJson(input)
if err != nil {
return err
}
S, ok := sc.(*BenchScalarP256)
if !ok {
return fmt.Errorf("invalid type")
}
s.value = S.value
return nil
}
func (p *BenchPointP256) Random(reader io.Reader) Point {
var seed [64]byte
_, _ = reader.Read(seed[:])
return p.Hash(seed[:])
}
func (p *BenchPointP256) Hash(bytes []byte) Point {
curve := elliptic.P256()
domain := []byte("P256_XMD:SHA-256_SSWU_RO_")
uniformBytes, _ := expandMsgXmd(sha256.New(), bytes, domain, 96)
u0 := new(big.Int).SetBytes(uniformBytes[:48])
u1 := new(big.Int).SetBytes(uniformBytes[48:])
u0.Mod(u0, curve.Params().P)
u1.Mod(u1, curve.Params().P)
ssParams := p256SswuParams()
q0x, q0y := osswu3mod4(u0, ssParams)
q1x, q1y := osswu3mod4(u1, ssParams)
x, y := curve.Add(q0x, q0y, q1x, q1y)
return &BenchPointP256{
x, y,
}
}
func (p *BenchPointP256) Identity() Point {
return &BenchPointP256{
x: big.NewInt(0), y: big.NewInt(0),
}
}
func (p *BenchPointP256) Generator() Point {
curve := elliptic.P256().Params()
return &BenchPointP256{
x: new(big.Int).Set(curve.Gx),
y: new(big.Int).Set(curve.Gy),
}
}
func (p *BenchPointP256) IsIdentity() bool {
x := core.ConstantTimeEqByte(p.x, core.Zero)
y := core.ConstantTimeEqByte(p.y, core.Zero)
return (x & y) == 1
}
func (p *BenchPointP256) IsNegative() bool {
return p.y.Bit(0) == 1
}
func (p *BenchPointP256) IsOnCurve() bool {
return elliptic.P256().IsOnCurve(p.x, p.y)
}
func (p *BenchPointP256) Double() Point {
curve := elliptic.P256()
x, y := curve.Double(p.x, p.y)
return &BenchPointP256{x, y}
}
func (p *BenchPointP256) Scalar() Scalar {
return new(BenchScalarP256).Zero()
}
func (p *BenchPointP256) Neg() Point {
y := new(big.Int).Sub(elliptic.P256().Params().P, p.y)
y.Mod(y, elliptic.P256().Params().P)
return &BenchPointP256{x: p.x, y: y}
}
func (p *BenchPointP256) Add(rhs Point) Point {
if rhs == nil {
return nil
}
r, ok := rhs.(*BenchPointP256)
if ok {
x, y := elliptic.P256().Add(p.x, p.y, r.x, r.y)
return &BenchPointP256{x, y}
} else {
return nil
}
}
func (p *BenchPointP256) Sub(rhs Point) Point {
if rhs == nil {
return nil
}
r, ok := rhs.Neg().(*BenchPointP256)
if ok {
x, y := elliptic.P256().Add(p.x, p.y, r.x, r.y)
return &BenchPointP256{x, y}
} else {
return nil
}
}
func (p *BenchPointP256) Mul(rhs Scalar) Point {
if rhs == nil {
return nil
}
r, ok := rhs.(*BenchScalarP256)
if ok {
x, y := elliptic.P256().ScalarMult(p.x, p.y, r.value.Bytes())
return &BenchPointP256{x, y}
} else {
return nil
}
}
func (p *BenchPointP256) Equal(rhs Point) bool {
r, ok := rhs.(*BenchPointP256)
if ok {
x := core.ConstantTimeEqByte(p.x, r.x)
y := core.ConstantTimeEqByte(p.y, r.y)
return (x & y) == 1
} else {
return false
}
}
func (p *BenchPointP256) Set(x, y *big.Int) (Point, error) {
// check is identity or on curve
xx := subtle.ConstantTimeCompare(x.Bytes(), []byte{})
yy := subtle.ConstantTimeCompare(y.Bytes(), []byte{})
// Checks are constant time
onCurve := elliptic.P256().IsOnCurve(x, y)
if !onCurve && (xx&yy) != 1 {
return nil, fmt.Errorf("invalid coordinates")
}
x = new(big.Int).Set(x)
y = new(big.Int).Set(y)
return &BenchPointP256{x, y}, nil
}
func (p *BenchPointP256) ToAffineCompressed() []byte {
var x [33]byte
x[0] = byte(2)
x[0] |= byte(p.y.Bit(0))
p.x.FillBytes(x[1:])
return x[:]
}
func (p *BenchPointP256) ToAffineUncompressed() []byte {
var out [65]byte
out[0] = byte(4)
p.x.FillBytes(out[1:33])
p.y.FillBytes(out[33:])
return out[:]
}
func (p *BenchPointP256) FromAffineCompressed(bytes []byte) (Point, error) {
if len(bytes) != 33 {
return nil, fmt.Errorf("invalid byte sequence")
}
sign := int(bytes[0])
if sign != 2 && sign != 3 {
return nil, fmt.Errorf("invalid sign byte")
}
sign &= 0x1
x := new(big.Int).SetBytes(bytes[1:])
rhs := rhsP256(x, elliptic.P256().Params())
// test that rhs is quadratic residue
// if not, then this Point is at infinity
y := new(big.Int).ModSqrt(rhs, elliptic.P256().Params().P)
if y != nil {
// fix the sign
if int(y.Bit(0)) != sign {
y.Neg(y)
y.Mod(y, elliptic.P256().Params().P)
}
} else {
x = new(big.Int)
y = new(big.Int)
}
return &BenchPointP256{
x, y,
}, nil
}
func (p *BenchPointP256) FromAffineUncompressed(bytes []byte) (Point, error) {
if len(bytes) != 65 {
return nil, fmt.Errorf("invalid byte sequence")
}
if bytes[0] != 4 {
return nil, fmt.Errorf("invalid sign byte")
}
x := new(big.Int).SetBytes(bytes[1:33])
y := new(big.Int).SetBytes(bytes[33:])
return &BenchPointP256{x, y}, nil
}
func (p *BenchPointP256) CurveName() string {
return elliptic.P256().Params().Name
}
func (p *BenchPointP256) SumOfProducts(points []Point, scalars []Scalar) Point {
nScalars := make([]*big.Int, len(scalars))
for i, sc := range scalars {
s, ok := sc.(*BenchScalarP256)
if !ok {
return nil
}
nScalars[i] = s.value
}
return sumOfProductsPippenger(points, nScalars)
}
func (p *BenchPointP256) X() *big.Int {
return new(big.Int).Set(p.x)
}
func (p *BenchPointP256) Y() *big.Int {
return new(big.Int).Set(p.y)
}
func (p *BenchPointP256) Params() *elliptic.CurveParams {
return elliptic.P256().Params()
}
func (p *BenchPointP256) MarshalBinary() ([]byte, error) {
return pointMarshalBinary(p)
}
func (p *BenchPointP256) UnmarshalBinary(input []byte) error {
pt, err := pointUnmarshalBinary(input)
if err != nil {
return err
}
ppt, ok := pt.(*BenchPointP256)
if !ok {
return fmt.Errorf("invalid point")
}
p.x = ppt.x
p.y = ppt.y
return nil
}
func (p *BenchPointP256) MarshalText() ([]byte, error) {
return pointMarshalText(p)
}
func (p *BenchPointP256) UnmarshalText(input []byte) error {
pt, err := pointUnmarshalText(input)
if err != nil {
return err
}
ppt, ok := pt.(*BenchPointP256)
if !ok {
return fmt.Errorf("invalid point")
}
p.x = ppt.x
p.y = ppt.y
return nil
}
func (p *BenchPointP256) MarshalJSON() ([]byte, error) {
return pointMarshalJSON(p)
}
func (p *BenchPointP256) UnmarshalJSON(input []byte) error {
pt, err := pointUnmarshalJSON(input)
if err != nil {
return err
}
P, ok := pt.(*BenchPointP256)
if !ok {
return fmt.Errorf("invalid type")
}
p.x = P.x
p.y = P.y
return nil
}
// From https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-8.2
func p256SswuParams() *sswuParams {
params := elliptic.P256().Params()
// c1 = (q - 3) / 4
c1 := new(big.Int).Set(params.P)
c1.Sub(c1, big.NewInt(3))
c1.Rsh(c1, 2)
a := big.NewInt(-3)
a.Mod(a, params.P)
b := new(big.Int).Set(params.B)
z := big.NewInt(-10)
z.Mod(z, params.P)
// sqrt(-Z^3)
zTmp := new(big.Int).Exp(z, big.NewInt(3), nil)
zTmp = zTmp.Neg(zTmp)
zTmp.Mod(zTmp, params.P)
c2 := new(big.Int).ModSqrt(zTmp, params.P)
return &sswuParams{
params, c1, c2, a, b, z,
}
}
// rhs of the curve equation
func rhsP256(x *big.Int, params *elliptic.CurveParams) *big.Int {
f := NewField(params.P)
r := f.NewElement(x)
r2 := r.Mul(r)
// x^3-3x+B
a := r.Mul(f.NewElement(big.NewInt(3)))
r = r2.Mul(r)
return r.Add(a.Neg()).Add(f.NewElement(params.B)).Value
}