sonr/crypto/paillier/paillier.go
Prad Nukala 31bcc21c35
feature/1121 implement ucan validation (#1176)
- **refactor: remove unused auth components**
- **refactor: improve devbox configuration and deployment process**
- **refactor: improve devnet and testnet setup**
- **fix: update templ version to v0.2.778**
- **refactor: rename pkl/net.matrix to pkl/matrix.net**
- **refactor: migrate webapp components to nebula**
- **refactor: protobuf types**
- **chore: update dependencies for improved security and stability**
- **feat: implement landing page and vault gateway servers**
- **refactor: Migrate data models to new module structure and update
related files**
- **feature/1121-implement-ucan-validation**
- **refactor: Replace hardcoded constants with model types in attns.go**
- **feature/1121-implement-ucan-validation**
- **chore: add origin Host struct and update main function to handle
multiple hosts**
- **build: remove unused static files from dwn module**
- **build: remove unused static files from dwn module**
- **refactor: Move DWN models to common package**
- **refactor: move models to pkg/common**
- **refactor: move vault web app assets to embed module**
- **refactor: update session middleware import path**
- **chore: configure port labels and auto-forwarding behavior**
- **feat: enhance devcontainer configuration**
- **feat: Add UCAN middleware for Echo with flexible token validation**
- **feat: add JWT middleware for UCAN authentication**
- **refactor: update package URI and versioning in PklProject files**
- **fix: correct sonr.pkl import path**
- **refactor: move JWT related code to auth package**
- **feat: introduce vault configuration retrieval and management**
- **refactor: Move vault components to gateway module and update file
paths**
- **refactor: remove Dexie and SQLite database implementations**
- **feat: enhance frontend with PWA features and WASM integration**
- **feat: add Devbox features and streamline Dockerfile**
- **chore: update dependencies to include TigerBeetle**
- **chore(deps): update go version to 1.23**
- **feat: enhance devnet setup with PATH environment variable and
updated PWA manifest**
- **fix: upgrade tigerbeetle-go dependency and remove indirect
dependency**
- **feat: add PostgreSQL support to devnet and testnet deployments**
- **refactor: rename keyshare cookie to token cookie**
- **feat: upgrade Go version to 1.23.3 and update dependencies**
- **refactor: update devnet and testnet configurations**
- **feat: add IPFS configuration for devnet**
- **I'll help you update the ipfs.config.pkl to include all the peers
from the shell script. Here's the updated configuration:**
- **refactor: move mpc package to crypto directory**
- **feat: add BIP32 support for various cryptocurrencies**
- **feat: enhance ATN.pkl with additional capabilities**
- **refactor: simplify smart account and vault attenuation creation**
- **feat: add new capabilities to the Attenuation type**
- **refactor: Rename MPC files for clarity and consistency**
- **feat: add DIDKey support for cryptographic operations**
- **feat: add devnet and testnet deployment configurations**
- **fix: correct key derivation in bip32 package**
- **refactor: rename crypto/bip32 package to crypto/accaddr**
- **fix: remove duplicate indirect dependency**
- **refactor: move vault package to root directory**
- **refactor: update routes for gateway and vault**
- **refactor: remove obsolete web configuration file**
- **refactor: remove unused TigerBeetle imports and update host
configuration**
- **refactor: adjust styles directory path**
- **feat: add broadcastTx and simulateTx functions to gateway**
- **feat: add PinVault handler**
2024-12-02 14:27:18 -05:00

377 lines
9.4 KiB
Go
Executable File
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// Copyright Coinbase, Inc. All Rights Reserved.
//
// SPDX-License-Identifier: Apache-2.0
//
// Package paillier contains Paillier's cryptosystem (1999) [P99].
// Public-Key Cryptosystems Based on Composite Degree Residuosity Class.
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.4035&rep=rep1&type=pdf
// All routines here from pseudocode §2.5. Fig 1: The Paillier Cryptosystem.
//
// This module provides APIs for:
//
// - generating a safe keypair,
// - encryption and decryption,
// - adding two encrypted values, Enc(a) and Enc(b), and obtaining Enc(a + b), and
// - multiplying a plain value, a, and an encrypted value Enc(b), and obtaining Enc(a * b).
//
// The encrypted values are represented as big.Int and are serializable. This module also provides
// JSON serialization for the PublicKey and the SecretKey.
package paillier
import (
"encoding/json"
"fmt"
"math/big"
"github.com/pkg/errors"
"github.com/onsonr/sonr/crypto/core"
"github.com/onsonr/sonr/crypto/internal"
)
// PaillierPrimeBits is the number of bits used to generate Paillier Safe Primes.
const PaillierPrimeBits = 1024
type (
// PublicKey is a Paillier public key: N = P*Q; for safe primes P,Q.
PublicKey struct {
N *big.Int // N = PQ
N2 *big.Int // N² computed and cached to prevent re-computation.
}
// PublicKeyJson encapsulates the data that is serialized to JSON.
// It is used internally and not for external use. Public so other pieces
// can use for serialization.
PublicKeyJson struct {
N *big.Int
}
// SecretKey is a Paillier secret key.
SecretKey struct {
PublicKey
Lambda *big.Int // lcm(P - 1, Q - 1)
Totient *big.Int // Euler's totient: (P - 1) * (Q - 1)
U *big.Int // L((N + 1)^λ(N) mod N²)1 mod N
}
// SecretKeyJson encapsulates the data that is serialized to JSON.
// It is used internally and not for external use. Public so other pieces
// can use for serialization.
SecretKeyJson struct {
N, Lambda, Totient, U *big.Int
}
// Ciphertext in Pailler's cryptosystem: a value $c \in Z_{N²}$ .
Ciphertext *big.Int
)
var two = big.NewInt(2) // The odd prime
// NewKeys generates Paillier keys with `bits` sized safe primes.
func NewKeys() (*PublicKey, *SecretKey, error) {
return keyGenerator(core.GenerateSafePrime, PaillierPrimeBits)
}
// keyGenerator generates Paillier keys with `bits` sized safe primes using function
// `genSafePrime` to generate the safe primes.
func keyGenerator(genSafePrime func(uint) (*big.Int, error), bits uint) (*PublicKey, *SecretKey, error) {
values := make(chan *big.Int, 2)
errors := make(chan error, 2)
var p, q *big.Int
for p == q {
for range []int{1, 2} {
go func() {
value, err := genSafePrime(bits)
values <- value
errors <- err
}()
}
for _, err := range []error{<-errors, <-errors} {
if err != nil {
return nil, nil, err
}
}
p, q = <-values, <-values
}
// Assemble the secret/public key pair.
sk, err := NewSecretKey(p, q)
if err != nil {
return nil, nil, err
}
return &sk.PublicKey, sk, nil
}
// NewSecretKey computes intermediate values based on safe primes p, q.
func NewSecretKey(p, q *big.Int) (*SecretKey, error) {
if p == nil || q == nil {
return nil, internal.ErrNilArguments
}
// Pre-compute necessary values.
pm1 := new(big.Int).Sub(p, core.One) // P - 1
qm1 := new(big.Int).Sub(q, core.One) // Q - 1
n := new(big.Int).Mul(p, q) // N = PQ
nn := new(big.Int).Mul(n, n) // N²
lambda, err := lcm(pm1, qm1) // λ(N) = lcm(P-1, Q-1)
if err != nil {
// Code coverage note: lcm returns error only if the inputs are nil, which can never happen here.
return nil, err
}
totient := new(big.Int).Mul(pm1, qm1) // 𝝋(N) = (P-1)(Q-1)
pk := PublicKey{
N: n,
N2: nn,
}
// (N+1)^λ(N) mod N²
t := new(big.Int).Add(n, core.One)
t.Exp(t, lambda, nn)
// L((N+1)^λ(N) mod N²)
u, err := pk.l(t)
if err != nil {
return nil, err
}
// L((N+1)^λ(N) mod N²)^-1 mod N
u.ModInverse(u, n)
return &SecretKey{pk, lambda, totient, u}, nil
}
// MarshalJSON converts the public key into json format.
func (pk PublicKey) MarshalJSON() ([]byte, error) {
data := PublicKeyJson{pk.N}
return json.Marshal(data)
}
// UnmarshalJSON converts the json data into this public key.
func (pk *PublicKey) UnmarshalJSON(bytes []byte) error {
data := new(PublicKeyJson)
if err := json.Unmarshal(bytes, data); err != nil {
return err
}
if data.N == nil {
return nil
}
pk.N = data.N
pk.N2 = new(big.Int).Mul(data.N, data.N)
return nil
}
// lcm calculates the least common multiple.
func lcm(x, y *big.Int) (*big.Int, error) {
if x == nil || y == nil {
return nil, internal.ErrNilArguments
}
gcd := new(big.Int).GCD(nil, nil, x, y)
if core.ConstantTimeEq(gcd, core.Zero) {
return core.Zero, nil
}
// Compute least common multiple: https://en.wikipedia.org/wiki/Least_common_multiple#Calculation .
b := new(big.Int)
return b.Abs(b.Mul(b.Div(x, gcd), y)), nil
}
// l computes a residuosity class of n^2: (x - 1) / n.
// Where it is the quotient x - 1 divided by n not modular multiplication of x - 1 times
// the modular multiplicative inverse of n. The function name comes from [P99].
func (pk *PublicKey) l(x *big.Int) (*big.Int, error) {
if x == nil {
return nil, internal.ErrNilArguments
}
if core.ConstantTimeEq(pk.N, core.Zero) {
return nil, internal.ErrNCannotBeZero
}
// Ensure x = 1 mod N
if !core.ConstantTimeEq(new(big.Int).Mod(x, pk.N), core.One) {
return nil, internal.ErrResidueOne
}
// Ensure x ∈ Z_N²
if err := core.In(x, pk.N2); err != nil {
return nil, err
}
// (x - 1) / n
b := new(big.Int).Sub(x, core.One)
return b.Div(b, pk.N), nil
}
// NewPubkey initializes a Paillier public key with a given n.
func NewPubkey(n *big.Int) (*PublicKey, error) {
if n == nil {
return nil, errors.New("n cannot be nil")
}
return &PublicKey{
N: n,
N2: new(big.Int).Mul(n, n), // Compute and cache N²
}, nil
}
// Add combines two Paillier ciphertexts.
func (pk *PublicKey) Add(c, d Ciphertext) (Ciphertext, error) {
if c == nil || d == nil {
return nil, internal.ErrNilArguments
}
// Ensure c,d ∈ Z_N²
cErr := core.In(c, pk.N2)
dErr := core.In(d, pk.N2)
// Constant time error check
var err error
if cErr != nil {
err = cErr
}
if dErr != nil {
err = dErr
}
if err != nil {
return nil, err
}
ctxt, err := core.Mul(c, d, pk.N2)
if err != nil {
// Code coverage note: core.Mul returns error only if the inputs are nil, which can never happen here.
return nil, err
}
return ctxt, nil
}
// Mul is equivalent to adding two Paillier exponents.
func (pk *PublicKey) Mul(a *big.Int, c Ciphertext) (Ciphertext, error) {
if a == nil || c == nil {
return nil, internal.ErrNilArguments
}
// Ensure a ∈ Z_N
aErr := core.In(a, pk.N)
// Ensure c ∈ Z_N²
cErr := core.In(c, pk.N2)
var err error
// Constant time error check
if aErr != nil {
err = aErr
}
if cErr != nil {
err = cErr
}
if err != nil {
return nil, err
}
return new(big.Int).Exp(c, a, pk.N2), nil
}
// Encrypt produces a ciphertext on input message.
func (pk *PublicKey) Encrypt(msg *big.Int) (Ciphertext, *big.Int, error) {
// generate a nonce: r \in Z**_N
r, err := core.Rand(pk.N)
if err != nil {
return nil, nil, err
}
// Generate and return the ciphertext
ct, err := pk.encrypt(msg, r)
return ct, r, err
}
// encrypt produces a ciphertext on input a message and nonce.
func (pk *PublicKey) encrypt(msg, r *big.Int) (Ciphertext, error) {
if msg == nil || r == nil {
return nil, internal.ErrNilArguments
}
// Ensure msg ∈ Z_N
if err := core.In(msg, pk.N); err != nil {
return nil, err
}
// Ensure r ∈ Z^*_N: we use the method proved in docs/[EL20]
// ensure r ∈ Z^_N-{0}
if err := core.In(r, pk.N); err != nil {
return nil, err
}
if core.ConstantTimeEq(r, core.Zero) {
return nil, fmt.Errorf("r cannot be 0")
}
// Compute the ciphertext components: ɑ, β
// ɑ = (N+1)^m (mod N²)
ɑ := new(big.Int).Add(pk.N, core.One)
ɑ.Exp(ɑ, msg, pk.N2)
β := new(big.Int).Exp(r, pk.N, pk.N2) // β = r^N (mod N²)
// ciphertext = ɑ*β = (N+1)^m * r^N (mod N²)
c, err := core.Mul(ɑ, β, pk.N2)
if err != nil {
// Code coverage note: core.Mul returns error only if the inputs are nil, which can never happen here.
return nil, err
}
return c, nil
}
// Decrypt is the reverse operation of Encrypt.
func (sk *SecretKey) Decrypt(c Ciphertext) (*big.Int, error) {
if c == nil {
return nil, internal.ErrNilArguments
}
// Ensure C ∈ Z_N²
if err := core.In(c, sk.N2); err != nil {
return nil, err
}
// Compute the msg in components
// ɑ ≡ c^{λ(N)} mod N²
ɑ := new(big.Int).Exp(c, sk.Lambda, sk.N2)
// l = L(ɑ, N)
ell, err := sk.l(ɑ)
if err != nil {
return nil, err
}
// Compute the msg
// m ≡ lu = L(ɑ)*u = L(c^{λ(N)})*u mod N
m, err := core.Mul(ell, sk.U, sk.N)
if err != nil {
return nil, err
}
return m, nil
}
// MarshalJSON converts the secret key into json format.
func (sk SecretKey) MarshalJSON() ([]byte, error) {
data := SecretKeyJson{
sk.N,
sk.Lambda,
sk.Totient,
sk.U,
}
return json.Marshal(data)
}
// UnmarshalJSON converts the json data into this secret key.
func (sk *SecretKey) UnmarshalJSON(bytes []byte) error {
data := new(SecretKeyJson)
if err := json.Unmarshal(bytes, data); err != nil {
return err
}
if data.N != nil {
sk.N = data.N
sk.N2 = new(big.Int).Mul(data.N, data.N)
}
sk.U = data.U
sk.Totient = data.Totient
sk.Lambda = data.Lambda
return nil
}